ha4t.aircv.keypoint_matching_contrib 源代码

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Detect keypoints with BRIEF/SIFT/SURF.
Need opencv-contrib module.
"""

import cv2

from ha4t.aircv.error import *  # noqa
from ha4t.aircv.keypoint_base import KeypointMatching


[文档] def check_cv_version_is_new(): """opencv版本是3.0或4.0以上, API接口与2.0的不同.""" if cv2.__version__.startswith("3.") or cv2.__version__.startswith("4."): return True else: return False
[文档] class BRIEFMatching(KeypointMatching): """FastFeature Matching.""" METHOD_NAME = "BRIEF" # 日志中的方法名
[文档] def init_detector(self): """Init keypoint detector object.""" # BRIEF is a feature descriptor, recommand CenSurE as a fast detector: if check_cv_version_is_new(): # OpenCV3/4, star/brief is in contrib module, you need to compile it seperately. try: self.star_detector = cv2.xfeatures2d.StarDetector_create() self.brief_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create() except: import traceback traceback.print_exc() print("to use %s, you should build contrib with opencv3.0" % self.METHOD_NAME) raise NoModuleError("There is no %s module in your OpenCV environment !" % self.METHOD_NAME) else: # OpenCV2.x self.star_detector = cv2.FeatureDetector_create("STAR") self.brief_extractor = cv2.DescriptorExtractor_create("BRIEF") # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
[文档] def get_keypoints_and_descriptors(self, image): """获取图像特征点和描述符.""" # find the keypoints with STAR kp = self.star_detector.detect(image, None) # compute the descriptors with BRIEF keypoints, descriptors = self.brief_extractor.compute(image, kp) return keypoints, descriptors
[文档] def match_keypoints(self, des_sch, des_src): """Match descriptors (特征值匹配).""" # 匹配两个图片中的特征点集,k=2表示每个特征点取出2个最匹配的对应点: return self.matcher.knnMatch(des_sch, des_src, k=2)
[文档] class SIFTMatching(KeypointMatching): """SIFT Matching.""" METHOD_NAME = "SIFT" # 日志中的方法名 # SIFT识别特征点匹配,参数设置: FLANN_INDEX_KDTREE = 0
[文档] def init_detector(self): """Init keypoint detector object.""" if check_cv_version_is_new(): try: # opencv3 >= 3.4.12 or opencv4 >=4.5.0, sift is in main repository self.detector = cv2.SIFT_create(edgeThreshold=10) except AttributeError: try: self.detector = cv2.xfeatures2d.SIFT_create(edgeThreshold=10) except: raise NoModuleError( "There is no %s module in your OpenCV environment, need contrib module!" % self.METHOD_NAME) else: # OpenCV2.x self.detector = cv2.SIFT(edgeThreshold=10) # # create FlnnMatcher object: self.matcher = cv2.FlannBasedMatcher({'algorithm': self.FLANN_INDEX_KDTREE, 'trees': 5}, dict(checks=50))
[文档] def get_keypoints_and_descriptors(self, image): """获取图像特征点和描述符.""" keypoints, descriptors = self.detector.detectAndCompute(image, None) return keypoints, descriptors
[文档] def match_keypoints(self, des_sch, des_src): """Match descriptors (特征值匹配).""" # 匹配两个图片中的特征点集,k=2表示每个特征点取出2个最匹配的对应点: return self.matcher.knnMatch(des_sch, des_src, k=2)
[文档] class SURFMatching(KeypointMatching): """SURF Matching.""" METHOD_NAME = "SURF" # 日志中的方法名 # 是否检测方向不变性:0检测/1不检测 UPRIGHT = 0 # SURF算子的Hessian Threshold HESSIAN_THRESHOLD = 400 # SURF识别特征点匹配方法设置: FLANN_INDEX_KDTREE = 0
[文档] def init_detector(self): """Init keypoint detector object.""" # BRIEF is a feature descriptor, recommand CenSurE as a fast detector: if check_cv_version_is_new(): # OpenCV3/4, surf is in contrib module, you need to compile it seperately. try: self.detector = cv2.xfeatures2d.SURF_create(self.HESSIAN_THRESHOLD, upright=self.UPRIGHT) except: raise NoModuleError("There is no %s module in your OpenCV environment, need contribmodule!" % self.METHOD_NAME) else: # OpenCV2.x self.detector = cv2.SURF(self.HESSIAN_THRESHOLD, upright=self.UPRIGHT) # # create FlnnMatcher object: self.matcher = cv2.FlannBasedMatcher({'algorithm': self.FLANN_INDEX_KDTREE, 'trees': 5}, dict(checks=50))
[文档] def get_keypoints_and_descriptors(self, image): """获取图像特征点和描述符.""" keypoints, descriptors = self.detector.detectAndCompute(image, None) return keypoints, descriptors
[文档] def match_keypoints(self, des_sch, des_src): """Match descriptors (特征值匹配).""" # 匹配两个图片中的特征点集,k=2表示每个特征点取出2个最匹配的对应点: return self.matcher.knnMatch(des_sch, des_src, k=2)