ha4t.aircv.multiscale_template_matching 源代码

# !/usr/bin/env python
# -*- coding: utf-8 -*-

"""多尺度模板匹配.

对用户提供的调节参数:
    1. threshod: 筛选阈值,默认为0.8
    2. rgb: 彩色三通道,进行彩色权识别.
    3. scale_max: 多尺度模板匹配最大范围,增大可适应更小UI
    4. scale_step: 多尺度模板匹配搜索比例步长,减小可适应更小UI
"""
from __future__ import division
from __future__ import print_function

import time

import cv2

from ha4t.aircv.aircv import crop_image
from ha4t.aircv.cal_confidence import cal_rgb_confidence, cal_ccoeff_confidence
from ha4t.aircv.error import TemplateInputError
from ha4t.aircv.utils import generate_result, check_source_larger_than_search, img_mat_rgb_2_gray, print_run_time


[文档] class MultiScaleTemplateMatching(object): """多尺度模板匹配.""" METHOD_NAME = "MSTemplate" def __init__(self, im_search, im_source, threshold=0.8, rgb=True, record_pos=None, resolution=(), scale_max=800, scale_step=0.005): self.im_source = im_source self.im_search = im_search self.threshold = threshold self.rgb = rgb self.record_pos = record_pos self.resolution = resolution self.scale_max = scale_max self.scale_step = scale_step
[文档] def find_all_results(self): raise NotImplementedError
@print_run_time def find_best_result(self): """函数功能:找到最优结果.""" # 第一步:校验图像输入 check_source_larger_than_search(self.im_source, self.im_search) # 第二步:计算模板匹配的结果矩阵res s_gray, i_gray = img_mat_rgb_2_gray( self.im_search), img_mat_rgb_2_gray(self.im_source) confidence, max_loc, w, h, _ = self.multi_scale_search( i_gray, s_gray, ratio_min=0.01, ratio_max=0.99, src_max=self.scale_max, step=self.scale_step, threshold=self.threshold) # 求取识别位置: 目标中心 + 目标区域: middle_point, rectangle = self._get_target_rectangle(max_loc, w, h) best_match = generate_result(middle_point, rectangle, confidence) # LOGGING.debug("[%s] threshold=%s, result=%s" % # (self.METHOD_NAME, self.threshold, best_match)) return best_match if confidence >= self.threshold else None def _get_confidence_from_matrix(self, max_loc, w, h): """根据结果矩阵求出confidence.""" sch_h, sch_w = self.im_search.shape[0], self.im_search.shape[1] if self.rgb: # 如果有颜色校验,对目标区域进行BGR三通道校验: img_crop = self.im_source[max_loc[1]:max_loc[1] + h, max_loc[0]: max_loc[0] + w] confidence = cal_rgb_confidence( cv2.resize(img_crop, (sch_w, sch_h)), self.im_search) else: img_crop = self.im_source[max_loc[1]:max_loc[1] + h, max_loc[0]: max_loc[0] + w] confidence = cal_ccoeff_confidence( cv2.resize(img_crop, (sch_w, sch_h)), self.im_search) return confidence def _get_target_rectangle(self, left_top_pos, w, h): """根据左上角点和宽高求出目标区域.""" x_min, y_min = left_top_pos # 中心位置的坐标: x_middle, y_middle = int(x_min + w / 2), int(y_min + h / 2) # 左下(min,max)->右下(max,max)->右上(max,min) left_bottom_pos, right_bottom_pos = ( x_min, y_min + h), (x_min + w, y_min + h) right_top_pos = (x_min + w, y_min) # 点击位置: middle_point = (x_middle, y_middle) # 识别目标区域: 点序:左上->左下->右下->右上, 左上(min,min)右下(max,max) rectangle = (left_top_pos, left_bottom_pos, right_bottom_pos, right_top_pos) return middle_point, rectangle @staticmethod def _resize_by_ratio(src, templ, ratio=1.0, templ_min=10, src_max=800): """根据模板相对屏幕的长边 按比例缩放屏幕""" # 截屏最大尺寸限制 sr = min(src_max/max(src.shape),1.0) src = cv2.resize(src, (int(src.shape[1]*sr), int(src.shape[0]*sr))) # 截图尺寸缩放 h, w = src.shape[0], src.shape[1] th, tw = templ.shape[0], templ.shape[1] if th/h >= tw/w: tr = (h*ratio)/th else: tr = (w*ratio)/tw templ = cv2.resize(templ, (max(int(tw*tr), 1), max(int(th*tr), 1))) return src, templ, tr, sr @staticmethod def _org_size(max_loc, w, h, tr, sr): """获取原始比例的框""" max_loc = (int((max_loc[0]/sr)), int((max_loc[1]/sr))) w, h = int((w/sr)), int((h/sr)) return max_loc, w, h
[文档] class MultiScaleTemplateMatchingPre(MultiScaleTemplateMatching): """基于截图预设条件的多尺度模板匹配.""" METHOD_NAME = "MSTemplatePre" DEVIATION = 150 @print_run_time def find_best_result(self): """函数功能:找到最优结果.""" if self.resolution!=(): # 第一步:校验图像输入 check_source_larger_than_search(self.im_source, self.im_search) if self.resolution[0]<self.im_search.shape[1] or self.resolution[1]<self.im_search.shape[0]: raise TemplateInputError("error: resolution is too small.") # 第二步:计算模板匹配的结果矩阵res if not self.record_pos is None: area, self.resolution = self._get_area_scope(self.im_source, self.im_search, self.record_pos, self.resolution) self.im_source = crop_image(self.im_source, area) check_source_larger_than_search(self.im_source, self.im_search) r_min, r_max = self._get_ratio_scope( self.im_source, self.im_search, self.resolution) s_gray, i_gray = img_mat_rgb_2_gray(self.im_search), img_mat_rgb_2_gray(self.im_source) confidence, max_loc, w, h, _ = self.multi_scale_search( i_gray, s_gray, ratio_min=r_min, ratio_max=r_max, step=self.scale_step, threshold=self.threshold, time_out=1.0) if not self.record_pos is None: max_loc = (max_loc[0] + area[0], max_loc[1] + area[1]) # 求取识别位置: 目标中心 + 目标区域: middle_point, rectangle = self._get_target_rectangle(max_loc, w, h) best_match = generate_result(middle_point, rectangle, confidence) # LOGGING.debug("[%s] threshold=%s, result=%s" % # (self.METHOD_NAME, self.threshold, best_match)) return best_match if confidence >= self.threshold else None else: return None def _get_ratio_scope(self, src, templ, resolution): """预测缩放比的上下限.""" H, W = src.shape[0], src.shape[1] th, tw = templ.shape[0], templ.shape[1] w, h = resolution rmin = min(H/h, W/w) # 新旧模板比下限 rmax = max(H/h, W/w) # 新旧模板比上限 ratio = max(th/H, tw/W) # 小图大图比 r_min = ratio*rmin r_max = ratio*rmax return max(r_min, self.scale_step), min(r_max, 0.99)
[文档] def get_predict_point(self, record_pos, screen_resolution): """预测缩放后的点击位置点.""" delta_x, delta_y = record_pos _w, _h = screen_resolution target_x = delta_x * _w + _w * 0.5 target_y = delta_y * _w + _h * 0.5 return target_x, target_y
def _get_area_scope(self, src, templ, record_pos, resolution): """预测搜索区域.""" H, W = src.shape[0], src.shape[1] th, tw = templ.shape[0], templ.shape[1] w, h = resolution x, y = self.get_predict_point(record_pos, (W, H)) predict_x_radius = max(int(tw * W / (w)), self.DEVIATION) predict_y_radius = max(int(th * H / (h)), self.DEVIATION) area = ( max(x - predict_x_radius, 0), max(y - predict_y_radius, 0), min(x + predict_x_radius, W), min(y + predict_y_radius, H), ) return area, (w*(area[3]-area[1])/W, h*(area[2]-area[0])/H)